Abstract

The laccase-catalyzed oxidation of hydroxytyrosol (HT) towards the formation of its bioactive oligomer derivatives was investigated. The biocatalytic oligomerization was catalyzed by laccase from Trametes versicolor in aqueous or various water-miscible organic solvents and deep eutectic solvent (DES)-based media. Mass Spectroscopy and Nuclear Magnetic Resonance were used for the characterization of the products. The solvent system used significantly affects the degree of HT oligomerization. The use of 50 % v/v methanol favored the production of the HT dimer, while other organic solvents as well as DESs led to the formation of hydroxytyrosol trimer and other oligomers. In vitro studies showed that the HT dimer exhibits 3- to 4-fold enhanced antibacterial activity against Gram-positive and Gram-negative bacteria compared to the parent compound. Moreover, the ability of HT dimer to inhibit the activity of soybean lipoxygenase and Candida rugosa lipase was 1.5-fold higher than HT, while molecular docking supported these results. Furthermore, HT dimer showed reduced cytotoxicity against HEK293 cells and exhibited a strong ability to inhibit ROS formation. The enhanced bioactivity of HT dimer indicates that this compound could be considered for use in cosmetics, skin-care products, and nutraceuticals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call