Abstract

Biomimetic apatite coating has been used to load osteogenic biomolecules onto the surface of titanium implants. Apatite on the surface of biomaterials is thought to function as a reservoir of biomolecules as well as enhancing osteoconductivity. In this study, 20α-hydroxycholesterol (20α-HC), an osteogenic oxysterol, was used to induce differentiation of a mouse embryo fibroblast cell line (C3H10T1/2) by loading the oxysterol on biomimetically coated apatite of titanium discs. We found that the phosphatase (alkaline phosphatase (ALP)) activity of 20α-HC was significantly higher with ascorbic acid than alone, suggesting a need for ascorbic acid as a co-factor. When 20α-HC was added into the apatite coating solution, the ALP activity of the C3H10T1/2 cells did not increase on the apatite surface, even in the presence of ascorbic acid. However, ALP activity increased dramatically when 20α-HC was loaded by volatilization of EtOH from the apatite coat after dipping discs in 20α-HC-dissolved EtOH. Interestingly, ascorbic acid was not needed for this increase in ALP activity, suggesting a synergistic effect of 20α-HC and apatite. The concentration of calcium ions, a major component of apatite, affected the osteogenic effect of 20α-HC, and the increase in ALP activity was attenuated by L-type calcium channel inhibitors, verapamil and nifedipine. These results demonstrate that calcium ions released from apatite are important in the synergistic effect of 20α-HC and apatite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.