Abstract

It is well known that Tb substitution for (Pr, Nd) in (Pr, Nd)-Fe-B based sintered magnetic materials is an effective way to increase intrinsic coercivity, but it is not quite clear whether the increment depends on the different matrix phases with various doping ingredient or not, which is essential to develop high quality magnets with high coercivity more efficiently and effectively with economic consumption of expensive Tb and other costly heavy rare earths. In this paper, we investigated the efficiency of Tb substitution for magnetic property in (Pr, Nd)-Fe-B sintered permanent magnets by co-doping Ga and Cu elements. It is shown that Ga and Cu co-doping can effectively improve the efficiency of Tb substitution to increase the thermal stability and the coercivity. The intrinsic coercivity increases up to 549 and 987 kA/m respectively by 1.5 wt% and 3.0 wt% Tb substitution in Ga and Cu co-doped magnets while the intrinsic coercivity increases up to only 334 and 613 kA/m respectively by the same amounts of Tb substitution in non-Ga and low-Cu magnets. In other words, it demonstrates that there is about 329–366 kA/m linear equivalent enhancement of intrinsic coercivity by 1.0 wt% Tb substitution for (Pr, Nd) in Ga and Cu co-doped magnets. The temperature coefficients of both intrinsic coercivity β and remanence α at 20–150 °C by 3.0 wt% Tb substitution for the magnets with Ga and Cu co-doping are −0.47%/K and −0.109%/K respectively, and in contrast those values are −0.52%/K and −0.116%/K respectively for the non-Ga and low-Cu magnets. It is the principal reason for more efficient enhancement of magnetic property by Tb substitution in the Ga and Cu co-doped magnets in which Tb atoms are expelled from triple junction phases (TJPs) to penetrate into the grain boundary phases (GB phases) and thus modify the grain boundary. It is prospected that the efficiency of Tb substitution would rely on different matrix phases with various doping constituents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.