Abstract

BackgroundColorimetric biosensors have important value for antibiotic residue testing. However, many previous methods were constructed based on the optical density change of certain unstable single-colored products with poor discrimination for visual measurements. Moreover, their low extinction coefficients usually result in low sensitivity of biosensors. In addition, many conventional signal amplification strategies often involve sophisticated nanomaterial preparation, inconvenient multi-step assay manipulation and limited signal amplification ability. Therefore, the development of new colorimetric biosensing strategies with excellent visual discrimination, high sensitivity and convenient manipulation is highly desirable. ResultsWe designed a target recycling accelerated cascade DNA walking amplification mechanism to trigger a telomerase extension-related enzymatic reaction, and developed a novel colorimetric biosensing strategy for kanamycin (Kana) assay. The target recycling was induced by an exonuclease III-assisted aptamer recognition reaction, which could also trigger the successive DNA walking at the streptavidin (SA)- and magnetic bead (MB)-based tracks. This not only caused the quantitative exposure of the telomeric substrate primers on MB surfaces but also released another strand to accelerate the SA-based DNA walking. By using the telomerase extension product to link numerous alkaline phosphatases and induce the plasmonic property change of gold nanobipyramids (Au NBPs), a colorimetric signal output strategy was constructed. This method could be applied for the high-resolution visual screening of Kana, and it also showed a very low detection limit of 17.6 fg mL−1 for assaying Kana over a wide, five-order-magnitude linear range. SignificanceThe quadruple nucleic acid recycling-enhanced telomerase extension resulted in the ultrahigh sensitivity of the method and also excluded the sophisticated manipulations involved in conventional biosensing strategies. The multiple enzyme catalysis-induced plasmonic property change of Au NBPs realized the stable and multicolor visual signal transduction. Together with its low cost, simple operation, high selectivity, excellent repeatability, and reliable performances, this method exhibits great potential for use in practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call