Abstract

Cell lines derived from the hemopoetic lineages are widely used as hosts for the production of biologicals. These cell lines have been demonstrated to undergo high levels of the active death program commonly referred to as apoptosis. The effects of overexpression of the apoptosis suppressor gene bcl-2 on the properties of a Burkitt lymphoma were compared with the control cell line (transfected with a negative control plasmid) under a variety of conditions relevant to cell culture production technology. In stationary batch cultures, there was a clear reduction in both the rate of total cell death and the level of apoptosis during the decline phase of the bcl-2 transfected cell cultures as compared with that of the control cell cultures. Nutrient analysis revealed that the onset of death during the control cell cultures occurred following complete exhaustion of glutamine. However, the bcl-2 transfected cell cultures continued to grow even though glutamine had been exhausted, and a significant decline in viability only occurred when glucose had also been completely exhausted. When cells were cultured in suspension without prior adaptation, the bcl-2 transfected cells grew significantly better, suggesting that the bcl-2 gene protected the cells from apoptosis triggered by either the lack of substrate or the hydrodynamic environment. Fluorescence microscopy revealed that death of the control cells was almost entirely by apoptosis, whereas death was almost exclusively by necrosis in the delayed decline phase of the transfected cell cultures. In both instances, death occurred before total exhaustion of glucose and glutamine. The induction of apoptosis following growth arrest is a major impediment to the development of culture strategies that optimize specific productivity by reducing the growth rate. Results presented here suggest that suppression of apoptosis by bcl-2 under the condition of excess thymidine allows the maintenance of cells in a growth-arrested state for much longer than would otherwise be possible. When cells were transferred to a range of commercial serum-free media, cell growth was, in all cases, much better for the bcl-2 transfected cell line. Moreover, when cells were cultivated in glutamine-free medium, the control cells exhibited a decrease in viable cell number within the first 24 h whereas, for the bcl-2 transfected cell cultures, viable cell number did not exhibit any clear decrease until after 75 h. Clearly, these results indicate that the metabolic engineering approach can be used to alter advantageously the survival and proliferative capacity of cells in cell culture environments. © 1996 John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call