Abstract

Cordierite (2Al2O3-5SiO2-2MgO) is the main carrier structure that enables the positioning of catalytic nanoparticles on the exhaust pipe in the selective catalytic reduction (SCR) applications. In order to be loaded more catalytic nanoparticles into this structure, it must be modified by acid treatment. In our study, these structures were treated with the different oxalic acid ratios for 2 and 4 hours. Brunauer, Emmet and Teller (BET) analysis were employed to measure the surface areas of acid-treated cordierite structures and scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDS) analysis was used to examine morphological structures of them. In consideration of BET analysis result, the surface area measurements of these structures reached up to 163.601 m2/g. The obtained value was about 327 times greater than the surface area of no treatment cordierite. In result of the SEM analysis, while the percentage of aluminum (Al) and magnesium (Mg) elements on the surface of these structures decreased, that of silicon (Si) increased. The reason of the high surface area is the formation of the pure amorphous silica due to the removal of Al and Mg ions from the surface of the cordierite. Thus, further coating of the catalytic nanoparticles on the cordierite surface could be allowed. As a result of this study, it could be said that the acid amount of the solution and the acid treatment duration enhances the surface area of the cordierite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call