Abstract
Cysteine is a commercially important sulfur-containing amino acid widely used as a supplement in the agricultural and food industries. It is extremely desirable to achieve a high sulfur conversion rate in the fermentation-based cysteine production. Here, the metabolic engineering of Escherichia coli was performed to enhance the sulfur conversion rate in cysteine biosynthesis. Accordingly, the reduction of sulfur loss by the regulator decR and its yhaOM operons were deleted. serACB was integrated into chromosome with constitutive promoter to coordinately increase sulfur utilization. The sulfur assimilation pathways and sulfur transcriptional regulator cysB were overexpressed to regulate sulfur metabolism and enhance sulfur conversion significantly. After the process optimization in fed-batch fermentation, LH16 [SLH02 ΔyhaM Ptrc1-serACB-cysM-nrdH-(pLH03, pTrc99a-cysB)] produced 7.5 g/L of cysteine with a sulfur conversion rate of 90.11%. These results indicate that cysteine production by LH16 is a valuable process in the agricultural and food industries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.