Abstract

Glutamate transporters (also called excitatory amino acid transporters, EAAT) are important in extracellular homeostasis of glutamate, a major excitatory neurotransmitter. EAAT4, a neuronally expressed EAAT in cerebellum, has a large portion (approximately 95% of the total L-aspartate-induced currents in human EAAT4) of substrate-gated Cl(-) currents, a distinct feature of this EAAT. We cloned EAAT4 from rat cerebellum. This molecule was predicted to have eight putative transmembrane domains. L-glutamate induced an inward current in oocytes expressing this EAAT4 at a holding potential -60 mV. Phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, significantly increased the magnitude of L-glutamate-induced currents but did not affect the apparent affinity of EAAT4 for L-glutamate. This PMA-enhanced current had a reversal potential -17 mV at extracellular Cl(-) concentration ([Cl(-)](o)) 104 mM with an approximately 60-mV shift per 10-fold change in [Cl(-)](o), properties consistent with Cl(-)-selective conductance. However, PMA did not change EAAT4 transport activity as measured by [(3)H]-L-glutamate. Thus PMA-enhanced Cl(-) currents via EAAT4 were not thermodynamically coupled to substrate transport. These PMA-enhanced Cl(-) currents were partially blocked by staurosporine, chelerythrine, and calphostin C, the three PKC inhibitors. Ro-31-8425, a PKC inhibitor that inhibits conventional PKC isozymes at low concentrations (nM level), partially inhibited the PMA-enhanced Cl(-) currents only at a high concentration (1 microM). Intracellular injection of BAPTA, a Ca(2+)-chelating agent, did not affect the PMA-enhanced Cl(-) currents. 4alpha-Phorbol-12,13-didecanoate, an inactive analog of PMA, did not enhance glutamate-induced currents. These data suggest that PKC, possibly isozymes other than conventional ones, modulates the substrate-gated Cl(-) currents via rat EAAT4. Our results also suggest that substrate-gated ion channel activity and glutamate transport activity, two EAAT4 properties that could modulate neuronal excitability, can be regulated independently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call