Abstract
This study aimed to investigate the effects and biological mechanism of external static magnetic fields (SMFs) on enhancing nitrogen removal at different influent ammonium nitrogen (NH4+) concentrations. Four sequential batch reactors (SBRs) with SMFs of 0, 15, 30, and 50 mT were operated continuously for 196 days, during which the influent NH4+-N concentration increased stepwise as 50, 100, 350, and 600 mg L−1. The results showed that 50 mT had optimum effects on enhancing nitrogen removal, especially at high NH4+-N concentrations (350 and 600 mg L−1). The biological mechanism by which SMF influences nitrogen removal varies depending on the NH4+ concentration. At low NH4+-N concentrations (50 and 100 mg L−1), a field of 50 mT increased key enzyme activities and corresponding functional gene abundances. Additionally, it further improved functional bacterial abundances, which involved nitrifying and denitrifying bacteria at high NH4+ concentrations. These findings could provide guidance for the selection of optimum SMF intensity at different influent NH4+ concentrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.