Abstract

Various contents of Ag nanoparticles were successfully introduced into the N-doped TiO2 photocatalysts via a hydrothermal procedure in the silver-ammonia solutions with different Ag concentrations. Effects of Ag loading on the structure and properties of N-doped TiO2 photocatalysts were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, fluorescence spectroscopy (FL), UV–vis spectroscopy, X-ray photoelectron spectroscopy (XPS), and N2 physical adsorption analysis. The relationship between the stability of N dopants in TiO2 lattice and the Ag loading content was investigated for the first time. The results confirm that Ag nanoparticles loading on TiO2 surfaces significantly restrain the escape of the N dopants from the oxide during the hydrothermal process, and the escape rate of N dopants decreased gradually with the increase of Ag loading amount. The dependence of photocatalytic activity on Ag content was also investigated through degradation of rhodamine B (RhB) under visible light irradiation. It was found that the photocatalytic activity increases gradually with increasing Ag content first, and then decreases after exceeding the optimal Ag content. Therefore, the photocatalytic activity of Ag/N co-modified TiO2 photocatalysts can be adjusted by the Ag content.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call