Abstract

We investigate the entanglement dynamics of two two-level emitters (qubits) mediated by a semiinfinite, one-dimensional (1D) photonic waveguide. The coupling of each qubit to the waveguide is chiral, which depends on the propagation direction of light. The finite end of the waveguide is terminated by a perfect mirror, such that coherent quantum feedback is introduced to the system. We show that the chirally generated entanglement between the qubits can be preserved by controlling the time delay of the feedback. Moreover, when the time delay is negligible, the qubit-qubit reduced system evolves within the strong-coupling regime and the qubits can be almost maximally entangled. We also analyze the robustness of the protocol against variations of some relevant parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.