Abstract

We have systematically studied magnetotransport properties in van der Waals (vdW) magnetic materials, (Fe1−xCox)5GeTe2, where the magnetic phase changes from the ferromagnetic with the perpendicular magnetic anisotropy (PMA; x = 0 , 0.05) or with the in-plane magnetic anisotropy (IMA; x = 0.19) to the antiferromagnetic (x = 0.46) with the PMA. We have demonstrated that such magnetic properties seen in bulk still remain even in thin film devices. An anomalous Hall resistance with magnetic hysteresis was clearly observed in the low Co substitution ( x = 0 , 0.05). The anomalous Hall effect was still observable for x = 0.19, but the magnetic hysteresis vanishes because of the IMA. In the antiferromagnetic region, there was no anomalous Hall effect in the low magnetic field range, but a clear hysteresis was observed at 2.5 T where the spin–flop transition takes place. This hysteresis can be seen only below 30 K and monotonically decreases with increasing temperature. We argue that the defects at a specific site in this system and also the resistance upturn below 30 K could be related to the hysteric behavior at the spin–flop transition. Our findings provide a recipe for the use of (Fe1−xCox)5GeTe2 with different Co substitutions to construct vdW magnetic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call