Abstract

Sparse 3D reconstruction, based on interest points detection and matching, does not allow to obtain a suitable 3D surface reconstruction because of its incapacity to recover a cloud of well distributed 3D points on the surface of objects/scenes. In this work, we present a new approach to retrieve a 3D point cloud that leads to a 3D surface model of quality and in a suitable time. First of all, our method uses the structure from motion approach to retrieve a set of 3D points (which correspond to matched interest points). After that, we proposed an algorithm, based on the match propagation and the use of particle swarm optimization (PSO), which significantly increases the number of matches and to have a regular distribution of these matches. It takes as input the obtained matches, their corresponding 3D points and the camera parameters. Afterwards, at each time, a match of best ZNCC value is selected and a set of these neighboring points is defined. The point corresponding to a neighboring point and its 3D coordinates are recovered by the minimization of a nonlinear cost function by the use of PSO algorithm respecting the constraint of photo-consistency. Experimental results show the feasibility and efficiency of the proposed approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call