Abstract

Dectin-1 is a C-type lectin-like pattern recognition receptor for β(1–3)-glucans. It plays a crucial role in protecting against fungal invasion through binding to β-glucans which are commonly present on the fungal cell wall. To probe its ligand binding mechanism by NMR, we expressed the recombinant murine Dectin-1 C-type lectin-like domain (CTLD) in E. coli using pCold vector and purified it. However, the high concentration of Dectin-1 CTLD required for NMR analysis could not be attained due to its inherent low solubility and low bacterial expression. In this study, we tried to increase expression and solubility of Dectin-1 CTLD by codon optimization and fusion of a GB1 tag (B1 domain of streptococcal Protein G). GB1 was inserted on either the N-terminal (NT) or C-terminal end as well as both terminal ends of human and mouse Dectin-1 CTLDs. A pure monomeric sample was only obtained with NT-GB1 fused mouse Dectin-1. Expression of mouse Dectin-1 CTLD yielded 0.9 ± 0.2 mg/L culture, codon optimized mouse Dectin-1 CTLD produced 1.4 ± 0.2 mg/L, and the tag-fused domain 7.1 ± 0.3 mg/L. The tag also increased solubility from 0.1 mM to 1.4 mM. The recombinant protein was correctly folded, in a monomeric state, and specifically bound β-glucan laminarin. These results indicate that fusing GB1 to the N-terminus of mouse Dectin-1 domain advantageously increases yield and solubility, allows retention of native structure, and that the site of fusion is critical.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call