Abstract

Objective: The objective of this work was to prepare and optimize orally disintegrating films of acyclovir (ACV), which is a known antiviral agent. To enhance the solubility of ACV, solid dispersions of ACV were made.Methods: The films were prepared using a solvent casting technique. Full factorial design was utilized for the optimization of the effect of independent variables such as the amount of hydroxypropyl methylcellulose 5 cps, sodium starch glycolate, and propylene glycol on the disintegration time. Other evaluation tests such as drug release, drug content, thickness, and folding endurance of film were also conducted.Results: Compatibility studies by Fourier transform infrared showed that there was no significant interaction between the drug and excipients used. Disintegration time was found to be 43 s for the optimized batch. The in vitro release profile of formulation response disintegrating time in phosphate buffer pH 6.8 revealed that there was a significant increment in drug release of the optimized batch in comparison to the screening batches. Further, short-term accelerated stability studies carried out for 4 weeks for the optimized formulation which proved that the formulated films were stable at the accelerated conditions of temperature and humidity (40±2°C/75±5% RH).Conclusions: It was concluded that such ACV solid dispersion films could be beneficial in enhancement of dissolution and consequently the oral bioavailability of ACV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.