Abstract

The application of compost has been recognized as one of the most promising approaches for preserving soil quality and crop production. The present study exhaustively investigates the impact of Water Hyacinth Compost (WHC), Hydrilla verticillata Compost (HVC) and Vegetable Waste Compost (VWC) on soil nutrient quality and engineering properties [Bulk Density (BD), water retention and specific gravity]. For the study, six different proportions constituting 5, 10, 15, 25, 35 and 45% of the composts by weight of the soil were taken. The soil compost mixtures were evaluated at different periods (0, 15, 30, 45, 60 and 120 days) for various nutrients [Na, Mg, P, K, Ca, Total Organic Carbon (TOC), Total Kjeldahl Nitrogen (TKN)], BD, water retention capacity, change in specific gravity and Cation Exchange Capacity (CEC) values. It was observed that when the percentage of compost was increased to 15–45%, it resulted in enhanced nutrient value of the soil. Also, for WHC, HVC and VWC 60 days was sufficient to improve the soil quality to its maximum extend. Based on the optimized physico-chemical properties generated from the Response Surface Methodology (RSM) model, it was found that compared to WHC and HVC, the VWC performed better results viz., generating low BD (0.87 g/cm3), high water retention capacity (45.63%) and degree of saturation (77.49%) of the soil. While WHC, HVC and VWC can be used to improve soil nutrient content and overall physico-chemical parameters in long terms, VWC could be more efficient and beneficial to degraded soil for restoring soil health.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call