Abstract

Smith-Purcell radiation (SPR) is an important means of generating terahertz waves, and the enhancement of SPR is an attractive topic nowadays. Inspired by the phenomenon of special SPR, where the enhancement is achieved by using a high-duty-cycle grating, we describe a new, to the best of our knowledge, but more effective approach to this challenging problem. By deriving a simple analytical solution for the SPR from an annular electron beam passing through a cylindrical metallic grating, we show that the inverse structure, a low-duty-cycle grating can exhibit rather high SPR efficiencies in the presence of quasi-bound states in the continuum (quasi-BICs). The analytical prediction is supported by particle-in-cell simulations, which show that the quasi-BICs can enhance the superradiant SPR generated by a train of electron bunches by orders of magnitude. These results present an interesting mechanism for enhancing the SPR from metallic gratings, and may find applications in terahertz free-electron lasers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.