Abstract

In this paper, we proposed to enhance a signal-to-noise (S/N) ratio for detecting a primary stress marker, serotonin, using a potentiometric biosensor modified by a well-designed nanofilter film. An extended-Au-gate field-effect transistor (EG-Au-gate FET) biosensor exhibits highly sensitive electrochemical detection toward various small biomolecules, including serotonin. Therefore, to enhance the S/N ratio for the serotonin detection, we designed an appropriate nanofilter film on the Au electrode by combining the aryldiazonium salt reduction strategy and boronate affinity. That is, only serotonin can approach the Au sensing surface to generate an electrical signal; interfering biomolecules are prevented from penetrating through the nanofilter, either because large interfering biomolecules cannot permeate through the highly dense, nanoporous multilayer film, or because phenylboronic acids included in the nanofilter captures small interfering biomolecules (e.g., catecholamines). The potentiometric biosensor modified by such a nanofilter film detected serotonin in a model sample solution containing catecholamines, cortisol, and human serum albumin with a high S/N ratio for the serotonin levels in the blood. Furthermore, we found that the effect of the nanofilter directly reflects the binding affinity of the receptors such as phenylboronic acids included in the nanofilter; thus, the selectivity and dynamic range of small target biomolecules can be tuned freely by designing the appropriate receptors for the nanofilter. The results show that a well-designed nanofilter biointerface can be a versatile biosensing platform for point-of-care testing, particularly for a simple stress check.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call