Abstract

The essential requirement of any battery-operated and mobile devices like laptops, cellular phones are that they must be small in size, consume less power, fast processing and cheaper expansion. Gordon Moore found in 1965 that the quantity of transistors on a chip will drive to be twofold every year, by manufacturing the portable devices and building circuit on the silicon chip which makes device cost effective. This drop in size of transistor is termed as scaling. Since scaling faces formidable challenges in nanometer regime, successors have been emerged as FinFET’s. They have thin fin or wing like channels enclosed by several gates. Due to many gates the design helps to improve performance and boost energy efficacy. Present work highlights the role of scaling and how scaling improves the speed of the device. The expectation from the scaled device is to consume as low power as possible, effective in costs and less design time. As we make the instrument more portable, complexity in it becomes infinite. Moore’s law supports us to realize the role of scaling to improve circuit performance and make a portable/mobile device. Here, we design 14nm, 10nm and 7nm Triple gate Fin-FET (TG Fin-FET) and investigate the Drain Induced Barrier Lowering (DIBL) and Short Channel Effect (SCE). By scaling the device DIBL and SCE are reduced giving better performance in terms of power and speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.