Abstract

The discovery and development of CMOS-compatible, nonlinear optical materials is essential to produce integrated photonic devices with advanced functionalities. AlN is a strong candidate for on-chip device demonstration due to its intrinsic second-order optical nonlinearities, large bandgap, and well-established fabrication techniques. However, AlN is not easily phase matched for the largest coefficient d33; the coefficients that could potentially be dispersion phase-matched, d31 and d15, have weak nonlinearities. This work investigates ferroelectric Al1-xBxN (x = 0 to 0.11) for viability as a large bandgap nonlinear optical material with unique suitability towards ultraviolet light generation using second harmonic generation. The linear and nonlinear optical properties are characterized accounting for material anisotropy. With increasing B concentration, a large enhancement from near negligible values to d31 = 0.9 ± 0.1 pm/V and d15= 1.2 ± 0.1 pm/V is observed. This compares favorably to other large bandgap materials like β-Ba(BO2)2, where the largest nonlinear coefficient is d22 ∼ 2.3 pm/V at 800 nm. This is accompanied by a change in the bandgap from 6.1 eV to 5.8 eV as B substitution goes from 0 to 11%. A periodically poled, quasi-phase-matched ferroelectric domain pattern with 400 nm domain size and a wall roughness of <16 nm is demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call