Abstract

1. An eye-cup preparation in anaesthetized rabbits was used to examine opioid modulation of acetylcholine (ACh) release from cholinergic neurones in the retina. 2. The mu-opioid receptor agonist, [D-Ala2, MePhe4, Gly-ol5]-enkephalin (DAMGO), when applied locally to the retina at concentrations between 1-30 microM significantly increased the light-evoked release of ACh. The effect of DAMGO was completely blocked by the selective mu-receptor antagonist CTOP but the kappa-receptor antagonist nor-binaltorphimine (norBNI) did not affect the action of DAMGO on ACh release indicating that the opioid produced its effect by activation of mu-receptors (the rabbit retina has negligible delta-receptors). 3. Blockade with bicuculline and strychnine of GABAergic and glycinergic inputs to the cholinergic neurones did not affect the action of DAMGO on ACh release. Also DAMGO did not reduce the potassium-evoked release of either GABA or glycine from rat isolated retinas. 4. Exposure of the rabbit retina to a combination of an A1-adenosine receptor antagonist, 8-cyclopentyl-1,3 dipropylxanthine (DPCPX), and adenosine deaminase did not affect the enhancing action of DAMGO on the light-evoked release of ACh. 5. When the retina in the rabbit eye-cup was exposed to kainate, the release of ACh was increased by approximately three times the resting release. In the presence of DAMGO the kainate-evoked release of ACh was enhanced by 44%. 6. These experiments show that activation of mu-opioid receptors by DAMGO increases the release of ACh elicited by physiological stimulation (flickering light). Since we could find no evidence thatDAMGO reduces inhibitory inputs to the cholinergic neurones, it seems that the enhancing action ofDAMGO on the light-evoked release of ACh involves a direct excitatory effect rather than disinhibition.This conclusion is supported by the enhancing action of DAMGO on the kainate-evoked release of ACh because kainate is thought to act directly on the cholinergic neurones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.