Abstract

The red upconversion emission of Ho3+ ions, in the optical window of biological tissue, exhibits excellent prospects in biological applications. This study aims to enhance the red upconversion emission intensity of Ho3+ ions in NaLuF4:20%Yb3+/2%Ho3+/12%Ce3+ nanoparticles through building different core–shell structures with different excitation wavelengths. A significantly enhanced red upconversion emission with a higher red-to-green ratio was successfully obtained in NaLuF4:20%Yb3+/2%Ho3+/12%Ce3+@NaLuF4 core–shell nanoparticles by introducing the Yb3+ and Yb3+/Nd3+ ions into the NaLuF4 shell, with enhancement of the red emission occurring when Yb3+ and Nd3+ ions in the shell transfer more excitation energy to the Ho3+ ions. Investigation of the red emission enhancement mechanism is based on spectral characteristics and lifetimes. We examined the synergistic effect of dual-wavelength co-excitation NaLuF4:20%Yb3+/2%Ho3+/12%Ce3+ @NaLuF4:10%Yb3+/15%Nd3+ core–shell nanoparticles to establish optimal excitation conditions. It is hoped that this method, using red upconversion emission core–shell nanoparticles with multi-mode excitation, can provide new ways to expand the applications of rare-earth luminescent materials in biomedicine and anti-counterfeiting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.