Abstract

The effect of low levels of carbon dioxide (CO(2)) in the gas phase on the production of recombinant human erythropoietin (EPO)in CHO cells was explored. A T-flask culture in an incubator without CO(2) addition showed a slow cell growth initially followed by the cessation of growth, while other cultures incubated under 0.5-5% CO(2) concentrations grew normally at the same rate during the entire period of cultivation. Interestingly, the production of EPO in the culture incubated under no CO(2) supply was highest among the tested cultures. The cell specific secretion rate of EPO (q(EPO)) of the culture under no CO(2) supply was about 3 times higher than that of the culture under 5% CO(2) supply. Western blot analysis and in vivo bioassay of EPO showed no apparent changes in EPO quality between the two cases of different CO(2) environments (air vs. 5% CO(2)), suggesting robust glycosylation of EPO by CHO cells even under very reduced CO(2) environment. Various combinations of the two extreme cases, with 5% CO(2) supply (suitable for cell growth) and no CO(2) addition (better for EPO production), were made in order to maximize the volumetric productivity of EPO secretion (P(V)) in CHO cells. The P(V) of the cultures programmed with initial incubation under 5% CO(2) followed by no CO(2) supply was about 2 times superior to that of the culture incubated only under no CO(2) supply. The P(V) of the culture under no CO(2) supply was slightly lower than that of culture grown under 5% CO(2). However, the q(EPO) of the no CO(2) supply case was more than 5 times higher than that of the culture under 5% CO(2) supply. In conclusion, we have demonstrated that a simple programming of CO(2) supply to an incubator can enhance the production of EPO in CHO cells remarkably, without any apparent change of the EPO quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call