Abstract

Ultrasound-targeted microbubble destruction (UTMD) has been recently developed for destroying bubbles carrying drugs or genes, thereby permitting local release of these target molecules. We investigated whether SonoVue®, a new contrast agent that contains phospholipid-stabilized microbubbles filled with sulfur hexafluoride vapor, is effective at delivering a recombinant adeno-associated viral (rAAV) vector to the rat heart by UTMD. Serotype-2 (rAAV2) marked with green fluorescent protein (GFP) as a reporter gene was attached to the surface of sulfur hexafluoride-filled microbubbles. Microbubbles were infused into the tail vein of rats with or without simultaneous echocardiography. Additional controls included ultrasound microbubbles that did not contain virus, virus alone, and virus plus ultrasound. One group underwent echocardiographic destruction of microbubbles followed by rAAV2-GFP infusion. Rats were killed after 4 weeks and examined for GFP expression. Green fluorescence was detected in all groups that received the rAAV2-GFP vector, indicating expression of the rAAV2 transgene; however, GFP expression in the UTMD group was significantly higher than that in control groups. We conclude that ultrasound-mediated destruction mediated by SonoVue is a promising method for delivery of rAAV2 to the heart in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.