Abstract

Using ultrafast laser excitation and time-correlated single-photon counting techniques, we have measured the collisional mixing rates between the rubidium 5(2)P fine-structure levels in the presence of (4)He gas. A nonlinear dependence of the mixing rate with (4)He density is observed. We find Rb fine-structure transfer is primarily due to binary collisions at (4)He densities of < or = 10(19) cm(-3), while at greater densities, three-body collisions become significant. We determine a three-body collisional transfer rate coefficient (5(2)P(3/2) --> 5(2)P(1/2)) of 1.25(9)x10(-32) cm(6)/s at 22 degrees C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.