Abstract

The differentiation-inducing agent N-methylformamide (NMF) enhances the sensitivity of some cell lines to ionizing radiation. To elucidate the mechanism of NMF-mediated radiosensitization, we examined the effects of this agent on gamma-ray-induced DNA double-strand breaks and micronuclei in two cell lines, clone A (human colon carcinoma) and HCA-1 (murine hepatocarcinoma). Both cell lines form a better differentiated phenotype upon exposure to NMF, yet only clone A is radiosensitized. The neutral (pH 9.6) elution assay was used to evaluate the effects of this maturational agent on radiation-induced double-strand breaks in these cell lines. Exposure of HCA-1 cells to NMF had no effect on the level of DNA double-strand breaks induced by gamma rays. In clone A cells, however, exposure to NMF enhanced the initial formation of gamma-ray-induced double-strand breaks at each dose tested. The repair of double-strand breaks in both cell lines was not influenced by NMF. As a measure of chromosome fragmentation after irradiation, we evaluated micronuclei using the cytokinesis block method. Exposure to NMF had no effect on radiation-induced micronuclei formation in HCA-1 cells yet significantly enhanced the frequency of micronuclei induced by radiation in clone A cells. In clone A cells, the increases in radiation-induced double-strand breaks and micronuclei as a function of NMF exposure time reached maximums by approximately 72 h. These data suggest that NMF-mediated radiosensitization is the result of an increase in the initial level of radiation-induced DNA double-strand breaks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.