Abstract
Endostatin is a potent antiangiogenesis protein with little or no toxicity that has potential to enhance radiotherapy. The major goal of this study was to evaluate the combination of radiation and endostatin gene therapy in a preclinical lung cancer model. Plasmid pXLG-mEndo, constructed in our laboratory, includes the mouse endostatin gene cloned into the pWS4 vector. The kinetics of endostatin expression and efficacy of the pXLG-mEndo and radiation ((60)Co gamma-rays) combination was evaluated in the C57BL/6 mouse-Lewis lung carcinoma (LLC) model. The LLC cells were implanted s.c. and pXLG-mEndo was injected intratumorally 12-14 days later without any transfection agent; a dose of 10 Gy radiation was applied approximately 16 h thereafter. Some groups received each modality twice. Endostatin, vascular endothelial growth factor (VEGF), and transforming growth factor-beta1 (TGF-beta1) were quantified in plasma and tumors, and tumor vasculature was examined. Endostatin expression within LLC tumors peaked on Day 7 after pXLG-mEndo injection. Addition of radiation to pXLG-mEndo significantly enhanced the level of tumor endostatin compared with plasmid alone (p < 0.05). Tumor growth was significantly delayed in mice receiving pXLG-mEndo plus radiation compared with no treatment (p < 0.005), radiation (p < 0.05), and control plasmid (p < 0.05). The number of LLC tumor vessels was reduced after combined treatment (p < 0.05), and significant treatment-related changes were observed in both VEGF and TGF-beta1. The data demonstrate that delivery of endostatin by pXLG-mEndo as an adjuvant to radiation can significantly enhance the antitumor efficacy of radiotherapy in the LLC mouse tumor model and support further investigation of this unique combination therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Radiation Oncology*Biology*Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.