Abstract

We fabricated a new porous silicon photonic device which is a special multi-layer porous silicon including two different single layer porous silicon and a porous silicon Bragg mirror, and investigated the influence of porous silicon Bragg mirror's structure on the fluorescence intensity of quantum dots (QDs) which infiltrated into porous silicon device, and CdSe/ZnS QDs we used emit at 605nm and 625nm respectively. By immersing porous silicon samples in QDs solution, QDs were successfully infiltrated into porous silicon devices which have high reflection band at or beyond fluorescence peak. Experimental results show that the fluorescence intensity of QDs which infiltrated into the first layer of porous silicon device can be enhanced when fluorescence peak falls into the high reflection band of porous silicon device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.