Abstract

Proton exchange membrane (PEM) with high proton conductivity is crucial to the commercial application of PEM fuel cell. Herein, sulfonated halloysite nanotubes (SHNTs) with tunable sulfonic acid group loading were synthesized and incorporated into sulfonated poly(ether ether ketone) (SPEEK) matrix to prepare nanocomposite membranes. Physicochemical characterization suggests that the well-dispersed SHNTs enhance the thermal and mechanical stabilities of nanocomposite membranes. The results of water uptake, ionic exchange capacity, and proton conductivity corroborate that the embedded SHNTs interconnect the ionic channels in SPEEK matrix and donate more continuous ionic networks. These networks then serve as proton pathways and allow efficient proton transfer with low resistance, affording enhanced proton conductivity. Particularly, incorporating 10% SHNTs affords the membrane a 61% increase in conductivity from 0.0152 to 0.0245 S cm−1. This study may provide new insights into the structure-properties relationships of nanotube-embedded conducting membranes for PEM fuel cell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.