Abstract

We had previously written a random-centroid optimization computer program for genetics (RCG) to optimize protein engineering, which was successfully applied to modify single site of the 16 amino acid residues at the active site of B. stearothermophilys neutral protease for improving thermostability [J. Agric. Food Chem., 46 (1998) 1655]. The same program was applied in this study to double-site mutation of the entire sequence of human cystatin C (HCC) with 120 residues for improving its protease inhibitory activity. The RCG program selected two sites simultaneously and amino acid residues to replace the sites selected in the sequence in order to find the best papain-inhibitory activity and stability of the protease inhibitor. Twenty-three double mutants and twenty-two single mutants were expressed by Pichia pastoris. Of the total 45 mutants, G12W/H86V mutant showed a 5-fold increase in the bioactivity over the recombinant wild-type (WT) cystatin. Also, P13F mutant exhibited a half-life temperature ( T 1/2) 5.2 °C higher than 68.2 °C of WT in addition to a 56% greater papain inhibitory activity. Mutation for diminishing β-sheet content reduced polymerization of cystatin C, thus improving papain-inhibitory activity. The approach using RCG was able to improve the functional properties of cystatin by least relying on the prior knowledge of its molecular structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.