Abstract

With the increase demands for biopharmaceuticals, the development of efficient protein crystallization processes for manufacturing highly pure crystalline products has become critical for downstream biomanufacturing. This work focused on the combined effects of the uniform shear rate in a solution created by using the Taylor vortex and the macromolecular architecture of a solution developed using poly(ionic liquid)s during protein crystallization. The results were as follows: (1) the accelerated primary nucleation rate with a uniform shear force that was generated by the Taylor vortex; (2) the stability of the protein product prepared using the poly(ionic liquid)s was high in the crystallization solution; and (3) improved control of supersaturation of the polymer was achieved with the salting-out effect. The average crystal size in the control group was considerably lower than 1 μm with low quality (9.00 Å) and yield (56%) of crystals, but the average size of lysozyme crystals obtained using the Taylor vortex and poly(ionic liquid)s increased up to 5 μm with high quality (1.86 Å) of crystals and yield (86%). A higher diffraction resolution indicated a better ordered crystalline structure, demonstrating that the Taylor vortex and poly(ionic liquid)s are useful for improving the crystal quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.