Abstract

In the modern power systems operating at lower stability margins, conventional non-adaptive schemes cannot offer adequate protection for securing the power system, especially against combinational events. For major disturbances, the active power deficit is usually accompanied by reactive power deficit and frequency stability and voltage stability of the system are jeopardized simultaneously. In this paper, three adaptive combinational load shedding methods are proposed to improve operation of the conventional underfrequency load shedding scheme in order to enhance power system stability following severe disturbances. The proposed methods use locally measured frequency and voltage signals to counteract such events. In the proposed algorithms, load shedding is started from the locations which have higher voltage decay for longer period of time. The speed, location, and amount of load shedding are changed adaptively depending on the disturbance location, voltage status of the system, and the rate of frequency decline. Operation of the conventional and the proposed load shedding methods have been simulated in an actual large network. Obtained simulation results confirm that the proposed methods provide considerable enhancement in the power system voltage stability margin, and by using the proposed algorithms, various power system blackouts could be prevented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call