Abstract

As lasers become progressively higher in power, optical damage thresholds will become a limiting factor. Using the non-linear optics of plasma may be a way to circumvent these limits. In this paper, we report on simulations showing an enhancement to plasma wakefield self-compression of femtosecond laser pulses due to an ionization gradient at the leading edge of the pulse. By operating in a regime where wakefield generation is driven by moderately relativistic (∼1018 W cm−2) laser pulses and proper choice of gas species, the ionization front of the pulse can lead to a frequency shift that enhances the ponderomotive force and therefore both the wakefield generation and subsequent pulse compression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call