Abstract

Plant in vitro cultures, including hairy roots, can be applied for controlled production of valuable natural products, such as triterpenoids and sterols. These compounds originate from the common precursor squalene. Sterols and triterpenoids distinctly differ in their functions, and the 2,3-oxidosqualene cyclization step is often regarded as a branch point between primary and secondary (more aptly: general and specialized) metabolism. Considering the crucial role of phytosterols as membrane constituents, it has been postulated that unconstrained biosynthesis of triterpenoids can occur when sterol formation is already satisfied, and these compounds are no longer needed for cell growth and division. This hypothesis seems to follow directly the growth-defense trade-off plant dilemma. In this review, we present some examples illustrating the specific interplay between the two divergent pathways for sterol and triterpenoid biosynthesis appearing in root cultures. These studies were significant for revealing the steps of the biosynthetic pathway, understanding the role of particular enzymes, and discovering the possibility of gene regulation. Currently, hairy roots of many plant species can be considered not only as an efficient tool for production of phytochemicals, but also as suitable experimental models for investigations on regulatory mechanisms of plant metabolism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.