Abstract

Cadmium sulfide (CdS) and cadmium selenide (CdSe) are sequentially assembled onto a nanocrystalline TiO2 film to create a quantum-dot (QD)-sensitized solar cell application by a successive ionic layer adsorption and reaction (SILAR) method. The results show that CdS and CdSe QDs have a complementary effect in the performance of light harvest of solar cell. Single-walled carbon nanotubes (SWNTs) are incorporated with a CdS/CdSe QDs solar cell by mixing them with TiC2 film to enhance electron transfer. SWNTs are also sprayed onto CdSe QDs (SWNTs onto CdSe) to apply p+ type properties of SWNTs. Absorbance is increased in a wide wavelength range. In particular, cells having the sprayed SWNTs onto the QDs show a clear increase in absorbance at a low wavelength region. The fill factor of CdS/CdSe QDs solar cell with SWNTs is higher than that without SWNTs, indicating the decrease in loss of electron from TiO2 to QDs. Short-circuit current in a QD-sensitized solar cell having SWNTs on CdSe shows maximum value. Photo-current conversion efficiency of cells is increased in both cell types containing SWNTs at 10~17% compared with pristine cells. We expect that solar cells using SWNTs will affect future energy technology and devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call