Abstract
Photosynthetic pigment–protein-based biophotovoltaic devices are attracting interest as environmentally friendly energy sources. Photosystem I (PSI), a photosynthetic pigment–protein, is a proven biophotovoltaic material because of its abundance and high charge separation quantum efficiency. However, the photocurrent of these biophotovoltaic devices is not high because of their low spectral response. We have integrated an artificial light-harvesting antenna into a PSI-based biophotovoltaic device to expand the spectral response. To fabricate the device, a perylene di-imide derivative (PTCDI) was introduced onto a TiO2 surface as an artificial antenna. In the photovoltaic cells formed by the PTCDI/PSI-assembled TiO2 electrode, the magnitude of the incident photon-to-current conversion efficiency spectrum was significantly enhanced in the range 450–750 nm, and the photocurrent increased to 0.47 mA/cm2. The result indicates that the photons absorbed by PTCDI transfer to PSI via Forster resonance energy transfer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.