Abstract

The influence of the optical absorption coefficient, the particle size, the chopping frequency, and the length of the gas phase on the recently observed enhancement of photoacoustic signals in the presence of saturated vapors of ether has been investigated. Amorphous selenium has been used as the standard. The particle size plays a crucial role in understanding the enhancement as a function of optical absorption coefficient or chopping frequency. The enhancement is more when the optical absorption length is greater than particle size. The frequency dependence of the photoacoustic signal in the presence of ether is different from that in air when the thermal diffusion length of the solid is greater than the particle size. A qualitative interpretation of the results based on the ‘‘adsorbed’’ piston effect has been made.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.