Abstract

The limited regeneration of Fe2+ in the Fe-catalyzed advanced oxidation processes (AOPs) constrained its application for the removal of organic pollutants. Herein, MoSe2 was introduced to promote the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) in the Fe2+/PMS system. Compared with Fe2+/PMS processes, the 2,4-D degradation efficiency and PMS decomposition rate respectively increased by 73.8% and 84.2% in the MoSe2/Fe2+/PMS system. DFT simulation results suggested that Se atoms acted smoothly as the bridge supporting the charge transfer from Mo to adjacent Fe atoms, which led to the reduction of Fe3+. The rapid regeneration of Fe2+ boosted the activation of PMS and the degradation of pollutants. Additionally, the electron paramagnetic resonance (EPR) and quenching experiments results indicated that SO4∙−, ∙OH, and 1O2 accounted for 2,4-D degradation, and SO4∙− and 1O2 predominated the reaction. The Mo based co-catalysts showed better co-catalytic effect than the W counterparts, and the moderate adsorption for PMS and lower electron transfer electron transfer resistance accounted for the more excellent co-catalytic performance of MoSe2 than that of WSe2. In addition, the degradation efficiency of 2,4-D was up to 95.5% after five cycles of MoSe2 in the co-catalytic system. The coexistent humic acid (HA) and Cl− showed ignorant negative effect on the degradation, while HCO3− would depress the oxidation reaction. The acidic etching wastewater can be applied as the Fe ions source in this co-catalytic process to remove 2,4-D effectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.