Abstract

IntroductionThe objective of the present study was to evaluate the capacity of a tissue-engineered complex of human osteoprotegerin (hOPG)-transfected periodontal ligament stem cells (PDLSCs) seeding on beta-tricalcium phosphate (β-TCP) to regenerate alveolar bone defects in New Zealand rabbits.MethodsPDLSCs were isolated from rabbit periodontal ligament tissues and expanded in vitro to enrich PDLSC numbers, and their proliferative activities and differentiation capability were evaluated under specific induction conditions. Lentiviral vector containing hOPG and enhanced green fluorescent protein (EGFP) was constructed by using Gateway technology and transfected into rabbit PDLSCs. The expression of hOPG was determined with quantitative real-time reverse transcription-polymerase chain reaction and Western blot. The PDLSCs with or without engineered hOPG were seeded on β-TCP scaffolds prior to transplantation. Morphological characterization of cells and materials was done by scanning electron microscope. Twenty rabbits with alveolar bone defects were randomly allocated into four groups and transplanted with β-TCP, PDLSCs/β-TCP, and hOPG-transfected PDLSCs/β-TCP or were left untreated as a control. Animals were sacrificed 12 weeks after operation for histological observation and histomorphometric analysis.ResultsPDLSCs expressed STRO-1 and vementin and favored osteogenesis and adipogenesis in conditioned media. Expressions of hOPG were significantly upregulated after transfection of the lentiviral vector into PDLSCs. PDLSCs attached and spread well on β-TCP, and there was no significant difference in growth of PDLSCs on β-TCP between the hOPG transfection group and the non-transfection group. The histological observation and histomorphometric analysis showed that the hOPG-transfected PDLSCs/β-TCP complex exhibited an earlier mineralization and more bone formation inside the scaffold than control, β-TCP, and PDLSCs/β-TCP complexes. Implantation of hOPG-transfected PDLSCs contributed to new bone formation as determined by EGFP gene expression under circularly polarized light microscopy.ConclusionsThe present study demonstrated the feasibility of β-TCP scaffolds for primary PDLSC culture and expression of hOPG gene in vitro and in vivo, and hOPG-transfected PDLSCs could serve as a potential cell source for periodontal bone regeneration, which may shed light on the potential of systemic hOPG gene therapy in combination with PDLSC tissue engineering as a good candidate in periodontal tissue engineering for alveolar bone regeneration.

Highlights

  • The objective of the present study was to evaluate the capacity of a tissue-engineered complex of human osteoprotegerin-transfected periodontal ligament stem cells (PDLSCs) seeding on beta-tricalcium phosphate (β-TCP) to regenerate alveolar bone defects in New Zealand rabbits

  • We demonstrated that gene-modified rabbit PDLSCs expressing human osteoprotegerin (hOPG) combined with biodegradable β-TCP scaffold achieved an earlier mineralization and more bone formation when compared with β-TCP and PDLSCs-β-TCP, which may help to ensure the reconstruction of alveolar bone defect

  • No significant difference in growth of PDLSCs on β-TCP was observed between transfection and non-transfection groups. These results demonstrated that β-TCP supported the attachment, growth, and differentiation of PDLSCs and possessed good biocompatibility

Read more

Summary

Introduction

The objective of the present study was to evaluate the capacity of a tissue-engineered complex of human osteoprotegerin (hOPG)-transfected periodontal ligament stem cells (PDLSCs) seeding on beta-tricalcium phosphate (β-TCP) to regenerate alveolar bone defects in New Zealand rabbits. Periodontal disease, one of the most prevalent chronic infections in humans, is a highly prevalent chronic inflammatory condition involving bacterial infection of tooth-supporting tissues, which in turn lead to chronic inflammation and loss of teeth [1]. Recent evidence has established that periodontal disease is associated with several systemic conditions, including diabetes, cardiovascular disease, stroke, respiratory infections, and adverse pregnancy outcomes [3,4]. Careful treatment of periodontal disease may be of major importance for oral health as well as improvements of long-term outcome of the patients. Various approaches have been developed to restore the structure and function of destroyed periodontium, the final goal of periodontal therapy, and treatments, including bone grafting, guided tissue regeneration, and enamel matrix derivatives, have already been approved for clinical use. Complete regeneration is rarely accomplished by these methods [5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call