Abstract

AbstractOverlimiting current (OLC) is a non-linear current response that occurs related to an ion concentration polarization (ICP) phenomenon in micro/nanofluidic systems and holds great importance since it represents the rate of selective ion transportation through perm-selective structure. For last two decades, numerous studies of OLC have been reported about understanding the fundamentals of nanoelectrokinetics and enhancing ion transportation through perm-selective membranes. Recent study reported that the alignment of non-uniform microspace near the perm-selective membranes in two-dimensional micro/nanofluidic systems can significantly enhance OLC, i.e., overlimiting conductance (σOLC). This is attributed to recirculation flow induced by combination of unbalanced electroosmosis and induced pressure driven flow among non-uniform microspaces. However, 2D micro/nanofluidic systems have limited practicality due to their small volume and low throughput. Herein, we tested the OLC enhancement using 3D-printed hierarchical micro/nanofluidic systems with respect to the non-uniformity of microspaces. The 3D microspaces were fabricated as a mesh structure using a conventional 3D printer. By comparing current–voltage measurement with each type of mesh, we experimentally confirmed the generation of recirculation flow among non-uniform meshes and ionic current enhancement in 3D hierarchical micro/nanofluidic system. Also, we further investigated the enhancement of overlimiting conductance depending on the mesh pattern. Furthermore, we validated that this effect of microscale non-uniform compartmentalization, both increasing surface area and aligning non-uniform spaces, appears not only at low molar concentration but at high molar concentrations. This demonstration can offer a strategy to design optimal electrochemical systems where a perm-selective ion transportation is crucial.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.