Abstract

Oral delivery of anticancer drugs remains challenging because of limited water-solubility and/or poor permeability. Here, we aimed to enhance the oral bioavailability of tripterine (TRI, a plant-derived anticancer compound) using lipid nanospheres (LNs) and to determine the mechanisms of oral absorption. TRI-loaded LNs (TRI-LNs) were prepared by rapid dispersion of an ethanol mixture of TRI, lecithin, sodium oleate, and soybean oil into water. The obtained LNs were 150 nm in size with a high value of entrapment efficiency (99.95%). TRI-LNs were fairly stable and the drug release was negligible (<0.2%) in simulated physiological fluid. The pharmacokinetic results showed that LNs significantly enhanced the oral bioavailability of TRI with a relative bioavailability of 224.88% (TRI suspensions was used as a reference). The mechanistic studies demonstrated that improved intestinal permeability and post-enterocyte lymphatic transport were mainly responsible for the enhanced oral absorption. Our findings suggested that LNs may be a viable oral carrier for poorly bioavailable drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.