Abstract
This paper aims at providing a solution to optimum power flow (OPF) in considered power systems by using a flexible genetic algorithm (GA) model. The proposed approach finds the optimal setting of OPF control variables which include generator active output, generator bus voltages, transformer tap-setting and shunt devices with the objective function of minimizing the fuel cost. The proposed GA is modeled to be flexible for implementation to any power systems with the given system line, bus data, generator fuel cost parameter and forecasted load demand. The GA model has been analyzed and tested on the standard benchmark IEEE 30-bus system and two real time power systems which are an industrial park power system and a gold-copper mining power system both located in Indonesia. The results obtained outperform other approaches which are recently applied to the IEEE 30-bus system with the same control variable maximum & minimum limits and system data. Better results are also found when compared against the configurations used in the two real power systems. These superior results are achieved due to the robust and reliable algorithm of the proposed GA which utilizes the differential evaluation. General Terms Optimal power flow, Fuel cost minimization, Genetic algorithm, Differential Evaluation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.