Abstract

Nanocomposite films of polyvinyl chloride/polymethyl methacrylate (PVC/PMMA)/ lithium titanium oxide (Li4Ti5O12) were prepared through a casting method. The structural features of the prepared films were investigated using XRD, TEM, FTIR, SEM, and UV/Vis. spectroscopy techniques. XRD pattern reveals the formation of the crystalline phase of lithium titanium oxide of average crystallite size 40nm embedded in the amorphous polymeric matrix. The average crystallite size observed from TEM images is in good agreement with the XRD results. The physical interaction between the PVC/PMMA blend and Li4Ti5O12 NPs was confirmed by FTIR through the formation of a hydrogen bond. SEM micrographs showed partial compatibility between the polymer blend and the Li4Ti5O12 NPs. UV/Vis. analysis displayed that the values of the optical energy gap are decreased with increasing the concentration of Li4Ti5O12 NPs, this means that charge transfer complexes are arising between the polymer blend and Li-ions. The DC conductivity results are explained in the light of an intrachain one-dimensional interpolaron hopping model. The obtained results recommend the choice of Li4Ti5O12 NPs as dopants to enhance the electrical properties of virgin PVC/PMMA blend. Also, nanocomposite films can be employed in different electrochemical and industrial fields such as Li-ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.