Abstract

Zinc is recognized as an important element for olfaction. Zinc nanoparticles enhance olfaction in response to odors; however, the mechanisms underlying this action remain unknown. Herein, the effect of zinc on olfactory receptors was deduced using electro-olfactogram (EOG) responses recorded from the isolated olfactory mucosae of bullfrogs (Rana catesbeiana) following the administration or chelation of zinc ions. Menthone and n-amyl acetate were used as odorants, whereas forskolin (an adenylate cyclase activator) and cholera toxin (a Gαolf activator) were used as intracellular signal transduction activators. The EOG responses provoked by the odorants and cholera toxin were suppressed by dithizone-mediated zinc ion chelation, and the EOG responses were recovered by administering non-chelated zinc. However, the EOG response to forskolin was not suppressed by dithizone. In contrast, the addition of femtomolar concentrations of zinc ions enhanced the EOG responses. The above-mentioned effects on EOG responses were examined by changing the concentration of zinc ions but not zinc nanoparticles. The results of this study suggest that Gαolf alone or both olfactory receptors and Gαolf likely require zinc ions for their activation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call