Abstract

Zinc metal nanoparticles in picomolar concentrations strongly enhance odorant responses of olfactory sensory neurons. One- to 2-nm metallic particles contain 40-300 zinc metal atoms, which are not in an ionic state. We exposed rat olfactory epithelium to metal nanoparticles and measured odorant responses by electroolfactogram and whole-cell patch clamp. A small amount of zinc nanoparticles added to an odorant or an extracellular/intracellular particle perfusion strongly increases the odorant response in a dose-dependent manner. Zinc nanoparticles alone produce no odor effects. Copper, gold, or silver nanoparticles do not produce effects similar to those of zinc. If zinc nanoparticles are replaced by Zn(+2) ions in the same concentration range, we observed a reduction of the olfactory receptor neuron odorant response. Based on these observations, we hypothesize that zinc nanoparticles are closely located to the interface between the guanine nucleotide-binding protein and the receptor proteins and are involved in transferring signals in the initial events of olfaction. Our results suggest that zinc metal nanoparticles can be used to enhance and sustain the initial olfactory events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.