Abstract
1. In the present experiments, we investigated the effects of methylecgonidine (MEG) on nitric oxide (NO) production in cultured neonatal rat cardiomyocytes. Incubation of cultured cardiomyocytes with carbachol or MEG for 48 h significantly enhanced NO production. No release was increased from 1.48+/-0.13 microM (mg protein)(-1) for control to 5.73+/-0.19 microM (mg protein)(-1) for 1 microM carbachol treated cells (P<0.001). In addition, incubation with 1 microM MEG enhanced NO production to 5.55+/-0.28 microM (mg protein)(-1). The effects of MEG on NO production were concentration-dependent. The muscarinic antagonist atropine prevented the enhancement of NO production induced by carbachol or MEG. Compared to MEG-induced NO production, cocaine was much less potent. 2. The enhancement of NO production by carbachol or MEG was even greater in cultured cardiomyocytes transfected with the M(2) cDNA. After 48-h incubation with 1 microM carbachol or 1 microM MEG, NO production was increased by 6.5 and 6.7 fold, respectively, in cardiomyocytes overexpressing M(2) receptors. Coincubation with atropine or N(G)-nitro-L-arginine methyl ester abolished the enhancement of NO production. In contrast, NO production enhanced by carbachol or MEG in M(1)- or M(3)-transfected cardiomyocytes was similar to the level in non-transfected cells. 3. Western blot analysis showed that the protein levels of M(1), M(2), and M(3) were significantly increased in cardiomyocytes transfected with the receptor cDNAs, but MEG had no effect on the expressions. It is interesting that both carbachol and MEG caused a significant increase in constitutive endothelial NO synthase (eNOS) only in M(2)-transfected cardiomyocytes, not in non-transfected, M(1)- or M(3)-transfected cells. Again, atropine blocked the MEG-produced induction of eNOS. 4. Our data demonstrate that MEG significantly enhanced NO production in cultured cardiomyocytes and that the enhancement of NO production may result from MEG stimulation of muscarinic M(2) receptors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.