Abstract

Multifunctional materials that integrate optical and electric properties into a single composite have tremendous research value and application prospects for future optoelectronic devices. Meanwhile, the enhancement of luminescent performances of active materials through modulation of the microstructure has triggered the development of high-performance photonic devices. In this work, the nanocrystal embedded composite was fabricated to investigate their luminescent properties with and without compositional change. The results show that both the introduction of an impurity and the application of an electric field results in the enhancement of photoluminescence in this hybrid system. The observed phenomena can be ascribed to the modification of the environment around Er3+ by different approaches. The samples prepared in this work have proven to possess luminescent and electric properties simultaneously, and the light amplification caused by the polarizing process offers a novel approach in glass systems to enhance infrared photoluminescence without compositional change, which will make this kind of material more competitive in the optoelectronics field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.