Abstract

Peripheral nerve injuries (PNI/s) are common orthopedic conditions, characterized by motor and sensory deficits in the damaged region. There is growing evidence that the L-type calcium channel antagonist nimodipine has neuroprotective and neuroregenerative effects in animal models of neurological disorders. The efficacy of nimodipine on improving motor function and sensation following a sciatic nerve crush model was investigated in male Wistar rats as a model of PNI. At different time periods following damage, we evaluated motor function, sensory recovery, electrophysiology, histomorphometry, and gene expression. Moreover, we used histological and mass ratio analysis of the gastrocnemius muscle to assess atrophy. Our findings suggest that the nimodipine improves motor and sensory function more quickly in the damaged region 2, 4, and 6weeks after 1 week of treatment. Nimodipine treatment also increased the number of myelinated fibers while decreasing their thickness, as shown by histomorphometry. Additionally, nimodipine treatment increases the mRNA levels of neurotrophic factors (BDNF and NGF), which are known to contribute to the regeneration of injured neurons. The impact of nimodipine in PNI recovery may be due to its stimulation of the CREB signaling pathway and suppression of pro-inflammatory factor production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call