Abstract

Graphene has been demonstrated as a good candidate for ultrafast optoelectronic devices. However, graphene is essentially transparent in the visible and near infrared with an absorptivity of 2.3%, which has largely limited its application in photon detection. This Letter demonstrates that the absorptance in a monatomic graphene layer can be greatly enhanced to nearly 70%, thanks to the localized strong electric field resulting from magnetic resonances in deep metal gratings. Furthermore, the resonance frequency is essentially not affected by the additional graphene layer. The method presented here may benefit the design of next-generation graphene-based optical and optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.