Abstract

To clarify the time-related changes in cardiac function and the mechanism underlying the cardiac dysfunction present in diabetes mellitus, we studied mechanical responses induced by alpha(1)- and beta-adrenoceptors, the Ca(2+)-entry promoter Bay K 8644- and ryanodine (an agent known to inhibit Ca(2+) release from the sarcoplasmic reticulum) in papillary muscles from streptozotocin (STZ)-induced diabetic and age-matched control rats. Male Wistar rats received a single injection of STZ (60 mg kg(-1)) via the tail vein to induce diabetes. For the mechanical studies, papillary muscle preparations were suspended in an organ bath and isometric contractions were measured in 1-, 4-, and 10-week STZ-induced diabetic and age-matched control rats. In 1-week diabetic rats, the contractions induced by isoproterenol, methoxamine and Bay K 8644 were unchanged (vs. age-matched controls). In 4-week diabetic rats, (a) the isoproterenol- and Bay K 8644-induced contractions were impaired, (b) sensitivity to ryanodine was reduced, whereas (c) the methoxamine-induced contraction was unchanged. In 10-week diabetic rats, the isoproterenol- and Bay K 8644-induced contractile responses were impaired and the sensitivity to ryanodine was reduced, but in sharp contrast the methoxamine-induced contraction was enhanced. Both the mRNA level for the alpha(1A) adrenoceptor (but not the alpha(1B) or alpha(1D) mRNAs) and alpha(1A) adrenoceptor protein were increased in 10-week diabetic rats (vs. age-matched controls). These results suggest that impairments of beta-adrenergic and Ca(2+)-handling mechanisms occur early in the development of cardiomyopathy in STZ-induced diabetic rats, and that this is followed by augmentation of alpha(1A) adrenoceptor-mediated inotropy due to alpha(1A) adrenoceptor upregulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call